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Neural Radiance Fields convert 2D images to 3D

From a set of images, each with a
spatial location (X, y, z) and a viewing
direction (0, @), you can generate a
image from an entirely new location and
direction.

It gets details well too. Think shadows,
textures, transparency.




Train a NN with ~100 images all around an object
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Fig.1: We present a method that optimizes a continuous 5D neural radiance
field representation (volume density and view-dependent color at any continuous
location) of a scene from a set of input images. We use techniques from volume
rendering to accumulate samples of this scene representation along rays to render
the scene from any viewpoint. Here, we visualize the set of 100 input views of the
synthetic Drums scene randomly captured on a surrounding hemisphere, and we
show two novel views rendered from our optimized NeRF representation.



Now we have a function that outputs color and density

To generate pixels in
our image, we sample
across a direction.

For each sample, we
know a density. High
density = there’s
something there.

If density is high, draw
on our 2D canvas.
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Fig.2: An overview of our neural radiance field scene representation and differ-
entiable rendering procedure. We synthesize images by sampling 5D coordinates
(location and viewing direction) along camera rays (a), feeding those locations
into an MLP to produce a color and volume density (b), and using volume ren-
dering techniques to composite these values into an image (c). This rendering
function is differentiable, so we can optimize our scene representation by mini-
mizing the residual between synthesized and ground truth observed images (d).




We use differentiable volume and color curves!

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
—(RGB
( U) \ Ray 1 g Ray 1 2
Rayz&ﬂo/@/‘*_' /[ ".—g.t.
TS0l 2
G’ Ray 2 /—"\ .y g
&
Ray Distance

(b) (c) (d)

Fig.2: An overview of our neural radiance field scene representation and differ-
entiable rendering procedure. We synthesize images by sampling 5D coordinates
(location and viewing direction) along camera rays (a), feeding those locations
into an MLP to produce a color and volume density (b), and using volume ren-
dering techniques to composite these values into an image (c). This rendering
function is differentiable, so we can optimize our scene representation by mini-
mizing the residual between synthesized and ground truth observed images (d).



Same spot, different angle, continuous change
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(a) View 1 (b) View 2 ) Radiance Distributions

Fig. 3: A visualization of view-dependent emitted radiance. Our neural radiance
field representation outputs RGB color as a 5D function of both spatial position
x and viewing direction d. Here, we visualize example directional color distri-
butions for two spatial locations in our neural representation of the Ship scene.
In (a) and (b), we show the appearance of two fixed 3D points from two dif-
ferent camera positions: one on the side of the ship (orange insets) and one on
the surface of the water (blue insets). Our method predicts the changing spec-
ular appearance of these two 3D points, and in (c) we show how this behavior
generalizes continuously across the whole hemisphere of viewing directions.



With a few more techniques, we get amazing detail
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Fig.4: Here we visualize how our full model benefits from representing view-
dependent emitted radiance and from passing our input coordinates through
a high-frequency positional encoding. Removing view dependence prevents the
model from recreating the specular reflection on the bulldozer tread. Removing
the positional encoding drastically decreases the model’s ability to represent high
frequency geometry and texture, resulting in an oversmoothed appearance.



View Dependence = only using (X, vy, z) in training

If we don’t include the angle in our
training data, we lose reflective
properties.

Kinda makes sense. If we only look
head on, most things don't reflect.
Then we overfit on things not
reflecting.
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Positional Encoding maps 5D coordinates to higher dims

Without positional encoding, things are
still kinda blurry.

Transformers use it to notice position of
text.

NeRF uses it to notice more fine details.
More squigglies, more details.
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No Positional Encoding

5.1 Positional encoding

Despite the fact that neural networks are universal function approximators [14],
we found that having the network Fg directly operate on xyzf6¢ input coordi-
nates results in renderings that perform poorly at representing high-frequency
variation in color and geometry. This is consistent with recent work by Rahaman
et al. [35], which shows that deep networks are biased towards learning lower fre-
quency functions. They additionally show that mapping the inputs to a higher
dimensional space using high frequency functions before passing them to the
network enables better fitting of data that contains high frequency variation.



Map values into a collection of waves

We leverage these findings in the context of neural scene representations, and

Th ey Set L to 1 O fo r x (COO rd I n ate show that reformulating Fig as a composition of two functions Fg = F{ o+, one
learned and one not, significantly improves performance (see Fig. 4 and Table 2).

Here v is a mapping from R into a higher dimensional space R?Z, and Fy is still

system) and L to 4 for d (direction). simply  regular MLP. Formally, the encoding function we use is:

v(p) = (sin(2°7p), cos(20p), - - - , sin (2L 7p), cos (2L~ 1mp) ) . (4)
. This function 7(-) is applied separately to each of the three coordinate values
SO eaCh X, y, Z tu rnS |nto 1 O * 2 Va | ues . inx (whicth arzgt))rmalri)zid to 115 in F—i 11:]) and to tthe tthree componerfts of the
EaCh theta and ph| turns into 4 * 92 |
8 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

value.

Cartesian viewing direction unit vector d (which by construction lie in [—1,1]).
In our experiments, we set L = 10 for y(x) and L = 4 for v(d).

Reminds me of music gen adding 5 :
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Residual codebooks

Residual codebooks




Took 1-2 Days on a V100 GPU

Not bad. You don’t need a giant cluster.

and € = 10_7)7 The optimization for a single scene typicail&r take around 100~

Can eXpeCt V2 and more to be bette Ir. 300k iterations to converge on a single NVIDIA V100 GPU (about 1-2 days).



Better than alternatives!
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Get details a lot better.



Lots of work going into improving NeRF

Each section has 1-20 additional papers
since 2020.
https://github.com/awesome-NeRF/awe
some-NeRF

6.4k citations since 2020.

TITLE CITED BY YEAR

NeRF: Representing scenes as neural radiance fields for view synthesis 6474 2020
B Mildenhall, PP Srinivasan, M Tancik, JT Barron, R Ramamoorthi, R Ng
arXiv oreorint arXiv:2003.08934

Papers

» Faster Inference

» Faster Training

» Compression

» Unconstrained Images

» Deformable

» Video

» Generalization

» Pose Estimation

» Lighting

» Compositionality

» Scene Labelling and Understanding
» Editing

» Object Category Modeling
» Multi-scale

» Model Reconstruction

» Depth Estimation

» Robotics

» Large-scale scene

» Pre-training



https://github.com/awesome-NeRF/awesome-NeRF
https://github.com/awesome-NeRF/awesome-NeRF

Resources

NeRF Paper

NeRF paper talk from coauthor

NeRF explained Youtube vid

More NeRF papers repo



https://arxiv.org/abs/2003.08934
https://www.youtube.com/watch?v=HfJpQCBTqZs
https://www.youtube.com/watch?v=CRlN-cYFxTk
https://github.com/awesome-NeRF/awesome-NeRF

