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English German Translation quality

Introduction

The Transformer architecture first led to

breakthroughs in language translation. l I

Soon after, Transformers were applied to Aol R Spey

Oth er fi el d S (C Om put er Vi Si On, R einf O r C em ent BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to German translation benchmark.

Learning, Science, and more) and generating
similar breakthroughs.

https://blog.research.google/2017/08/transformer-novel-neural-network.html

How does the Transformer work?

https://en.wikipedia.org/wiki/AlphaFold#AlphaFold_2, 2020



Building Blocks

Let's go piece by piece.
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Figure 1: The Transformer - model architecture.



Embedding

Embeolo(‘mj
Embedding is converting a word into ceatmcizg, |
hundreds of numbers. "
Wha'e_
Combinations of numbers allow us to Bleprant
group words that are related for almost N
. b og
any reason (size, number of feathers, . Cat
emotion, etc.).
Now we can understand the meaning ] B
Second Number

behind words and how words relate to
each other.
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Positional Encoding

In sentences, it also matters in what
order the word appears.

" "
One way to keep track of position is to sretion Is Al You N eed
add something to the word'’s value
depending on the position. —

End words are bigger
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E n CO d e rS Encoded meaning of words
A

/- |

Encoders convert the words (now

Again, to 331: even wore meaning

numbers) into an even larger list of n

numbers (aka vector). 3 o J
The extra numbers let you store the > d
meaning of the whole sentence. i e ]
A A
The meaning of the sentence is 4 5 . .
o some math
computed by a few methods that we'll e j
get into. ;T
Embedded words

(words as numbers)



Building Blocks
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Attention e
Attention is what calculates how much ee ee
each word cares about each other word g i
in the sentence. — iy

d_

d_

To do that, we use a Query, Key, Value
method.

jalammar.github.iofillustrated-transformer/

/’

Scaled Dot-Product Attention Multi-Head Attention

Think of Google. You send Google a
phrase. Your phrase is understood and
looks into its database using keys and
return results, or values.

Linear

Scaled Dot-Product

Attention "
L Ll K1l
Q K \
' Y K Q




Attention

(For a deeper understanding of the math, check out Jay
Alammar’s lllustrated Transformer blog post.)

Similarly, the model has a bunch of
questions (Query) to find out what’s
important.

Then, it sees how well each query
matches with each key and gives more
weight to better matching values.

This lets the architecture pay closer
attention to more relevant information.

/

Scaled Dot-Product Attention

Divide by 8 (Vdy )
Softmax

Softmax
X
Value

Sum

Multi-Head Attention

ScdedDOtPtodJct

z [N

z [OHH

http://jalammar.github.iofillustrated-transformer/


http://jalammar.github.io/illustrated-transformer/

Multi-head Attention

Multi-headed attention allows for multiple Query, Key,

and Value matrices.

This allows for more information to be encoded and
performs better than just having one big set of Q, K,
and V.

The Linear and Concat layers help split and merge
results back together.

é )

Scaled Dot-Product Attention

Multi-Head Attention

Scaled Dot Product
Amrmon

| Linear al Linear i]' Linear i]’




Add and Norm

After attention is calculated, we continue forward by
adding the original input and the output and normalize
the result.

Adding the original makes sure the original information
isn’t overwritten entirely.

Normalizing makes training easier and more stable.

ENCODER #1

4 4
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i 4
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T, -
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x+ (IR proy i
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Feed Forward

Feed Forward layers are a standard way to organize
neural networks.

It combines linear and nonlinear equations to save
complex patterns and relationships.

This layer doesn’t use and of the input data so it helps
ground the model.

You can think of it as additional processing.

ENCODER #1
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Decoders

Decoders generate a response word by
word, passing previous words back in
for context.

Within the generation, Decoders uses
the output from the Encoder to hone in
on what it thinks is the best response.

Output

#
From encoder = — = ~ [
~
~

I )
G + SoPtha; Layer (rumber to word)
e
( Decoders
g )
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Embedding and Position Encoding (word to number)
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T P |

(start) I I om Trdn
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Masked Multi-head Attention

When calculating attention, the mask zeros out
the any relation to words after the word we’re
looking at.

Instead of being able to look at the whole
sentence like in encoding, we can only pay
attention to words we’ve seen when generating
word by word.

This helps with training our decoder to be the
best at predicting.

Scaled Dot-Product Attention
Q K V
\ S
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Passing encoder results to Decoder

By passing the output of the Encoder to
the Decoder, it can attend to all
positions in the input sequence.

There are also pre-trained weights that _——— e -

transform the encoder output into Keys [ : :

and Values for the decoder.
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Linear and Softmax

The final two layers determine what
word we output.

The Linear Layer maps the decoder
result into a list of scores.

The Softmax layer turns the scores into
probabilities and the highest one is
chosen as the next word.

Which word in our vocabulary
is associated with this index?

Get the index of the cell

with the highest value
(argmax)

log_probs

logits

Decoder stack output

am
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7'y

|
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( Linear )

4

(B R
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Hope it helped!

Sources:

e Attention Is All You Need Paper
e The lllustrated Transformer
[
([

Introduction to Transformers w/ Andrej Karpathy
ChatGPT

Roger Lam

https://www.linkedin.com/in/lam-roger/



https://arxiv.org/abs/1607.06450
http://jalammar.github.io/illustrated-transformer/
https://www.youtube.com/watch?v=XfpMkf4rD6E
https://www.linkedin.com/in/lam-roger/

Linearity

Buyins, Apples in Los Ange_les

We use math equations to represent
real life.

Price

Sometimes things are simple and
can be estimated by a straight line.

Weight of Apples



Non-linearity

Time to get from West LA to KTown
Many times life is more complicated

than just straight lines

Time it tokes |

You need curves.

The curves let you model more
complex things.

5 TAM 129»« ?Pm
Time of o(od./



Lines and Curves x 1,000

But instead of one line or curve, let’s
have a thousand (or a million or a
billion) lines and curves.

We can estimate based on a bunch
of things.

Also, we can let computers figure out
what is important.




